
GAP-Lib Reference Document

TABLE OF CONTENTS

GAP.lib/--background--
GAP.lib/--data items--
GAP.lib/CreatePopulation
GAP.lib/Crossover
GAP.lib/DeletePopulation
GAP.lib/EnterGAP
GAP.lib/Evolve
GAP.lib/Flip
GAP.lib/GaussRand
GAP.lib/HammingDist
GAP.lib/InGaussRand
GAP.lib/InitRand
GAP.lib/InRand
GAP.lib/IRange
GAP.lib/PopMember
GAP.lib/Rnd
GAP.lib/Testbit

GAP-Lib is (C)1998-1999 Peter Bengtsson, standard disclaimer applies.

1/21



   PURPOSE
The Genetic Algorithm Programming Library (GAP-Lib) is intended to
make it easier to implement genetic algorithms for any purpose. The
library itself implements most of the framework needed to handle one
or several populations thus leaving the programmer free to concentrate
on the purpose of her program.
   Some work will still be needed, specifically setting up a genotype,
creating a fitness function and in some cases functions for
initializing, mutating, crossing and deleting individuals.

   OVERVIEW
GAP-Lib: A Genetic Algorithm Programming Library.

A library for programming with genetic algorithms. The library features
a simple yet flexible interface coupled with sensible default values
and quite powerful built-in functionality to provide for both high and
low-level programming.

The GAP-Lib is primarily bit-oriented and this is reflected in the
existing default-functions for crossover and  mutation. It is however
possible to use almost any representation as long as the library
itself only sees fixed-length individuals (Variable length individuals
are possible though).

A typical program using the GAP-Lib will begin by initializing the
GAP environment by calling EnterGAP() then create a population using
CreatePopulation() followed by some number of calls to Evolve() and
finally ending with calling DeletePopulation().

The current version as of 29-Jan-1999 is 0.72
(Version 0, Revision 72).

Current limitations include:

• Hard to implement dynamic-length individuals.
• Not thread-safe (Not dynamically linked).

 

2/21



   STRUCTURES

GAP-Lib has three primary structures to keep track of data. One is the
user-defined structure which describes an individual and though this
structure is not always nessecary, it is highly recommended that you
have one since it will help others to read your code.

The other structure is the population structure which in turn includes
a statistics structure. A member-by-member explanation of these
structures follow here:

struct Population {
   long   NumPolys;
   long   Generation;
   long   Flags;
   struct Popstat Stat;
   long   Bytes;
   void  *Polys;
   void  *Magic;
};

NumPolys - This is the number of individuals in the population.
Generation - This is how many times a generation shift has taken place.
Flags - Internal status, do not touch.
Stat - This is the statistics structure, see below.
Bytes - The byte-size of an individual (or its descriptor).
Polys - This is for the internal list of individuals, do not touch.
Magic - This is also internal, do not touch.

struct Popstat {
   double  AverageFitness;
   double  MedianFitness;
   double  TypeFitness;
   long    TypeCount;
   double  StdDeviation;
   double  MaxFitness;
   double  MinFitness;
   void   *Max;
   long    Generation;
};

AverageFitness - The average fitness of the population.
MedianFitness - The median fitness of the population.
TypeFitness - The type (most common) fitness value.
TypeCount - The number of individuals with the type fitness.
StdDeviation - The standard deviation of the fitness values.
MaxFitness - The fitness value of the fittest individual.
MinFitness - The fitness value of the least fit individual.
Max - A pointer to the fittest individual after the last call to
      Evolve().
Generation - The generation for which these statistics are valid.

The Popstat structure is read-only and it is important to remember
that even if you copy the structure the Max pointer will become
invalid the next time Evolve() is called. 

3/21



A taglist is a list of pairs, the first member of the pair is the
tag and determines what type of data the second member is. A typical
member of a taglist could look like this:

{EVL_Elite,5}
 ^         ^
 |    |-> The data.
 |-> The type of data.

A complete taglist could look like this:

struct TagItem MyTaglist[]={
   {EVL_Evaluator, fitfunc}, /* Fitness function */
   {EVL_Elite,     5}, /* No. of elite individuals */
   {TAG_DONE,      0}  /* End-Tag */
};

The End-Tag, TAG_DONE, is a special tag common to all taglists. There
are currently four such tags defined:

TAG_DONE - Marks the end of a taglist.
TAG_END - Equivalent to TAG_DONE.
TAG_IGNORE - This tag is ignored.
TAG_MORE - ti_Data is a pointer to a taglist with more tags,

  processing of the current taglist will be terminated.

As some of you might be a bit lazy ;-), there is also an alternative
way of specifying taglists. At least in GAP-Lib there is. As an example
we have the function Evolve() which also has and interface named
EvolveT(), EvolveT() takes a variable number of arguments, the last
of which make up the taglist. To use the above taglist with EvolveT()
one would write:

EvolveT(Pop,EVL_Evaluator,fitfunc,EVL_Elite,5,TAG_DONE);
^
|->This is not part of the taglist.

   PRIMITIVE TYPES

GAP-Lib defines one primitive data type; IPTR. The IPTR is a type
large enough to hold both an integer and a pointer, it is used for
the data-part of a tagitem. IPTR can be considered equivalent to
intptr_t as defined in the C9X C-Language standard-to-be.

 

4/21



   NAME
CreatePopulation -- Allocates and initializes a population.
CreatePopulationT -- Varargs interface to CreatePopulation.

   SYNOPSIS
struct Population *CreatePopulation(long int,long int,struct TagItem *);
struct Population *CreatePopulationT(long int,long int,...);

Pop = CreatePopulation(Num,PSize,TagList);
Pop = CreatePopulationT(Num,PSize,...);

   FUNCTION
This function will allocate and initialize a population. If no
initialization function is given, CreatePopulation() will simply
randomize all bits in the created individuals. There is also a
predefined initialization function which initializes every individual
to a string of zero bits.

   INPUTS
Num  - Number of individuals to be created in this population.
PSize  - The byte-size of the individuals in this population.
TagList  - A pointer to a taglist.

   TAGS

POP_Init (void (*)(void *)) - A pointer to a function or one of the
     values RAND_INIT or ZERO_INIT. Currently NULL is equivalent to
     ZERO_INIT. A function to initialize an individual should take a
     pointer to an individual and return nothing (void).

POP_Destruct (void (*)(void *)) - A pointer to a function to be called
     when deleting an individual. If you are allocating resources with
     a custom initialization function, then you should supply this
     tag. The function should take a pointer to an individual and
     return nothing (void).

POP_Cache (BOOL) - Set this to false if you are modifying the
     individuals between calls to Evolve() or if you really need to
     save memory. Default is TRUE which enables some caching of data.

   RESULT
Pop  - An initialized population structure or NULL if something

   failed.

   NOTE
CreatePopulation() will fail if EnterGAP() has not been called
previously.

   BUGS
None known.

   SEE ALSO
EnterGAP(), DeletePopulation()

 

5/21



   NAME
Crossover -- Perform crossover on two bitstrings.

   SYNOPSIS
void Crossover(void *,void *,int,int);

Crossover(void *Ind1,void *Ind2,int At,int Size);

   FUNCTION
Performs one-point crossover of two bitstrings. The bitstrings must
have the same length.

   INPUTS
Ind1 - Pointer to the first bitstring (Individual).
Ind2 - Pointer to the second bitstring (Individual).
At - Bit to perform crossover at.
Size - Size of bitstring in bytes. (OBS!: _BYTES_!!)

   RESULT
None.

   NOTE
Note well that all bitstrings must consist of a whole number of bytes.
This is for reasons of simplicity and efficiency.

   BUGS
None known.

   SEE ALSO
Flip

 

6/21



   NAME
DeletePopulation -- Delete a previously allocated population.

   SYNOPSIS
void DeletePopulation(struct Population *);

DeletePopulation(Pop);

   FUNCTION
Deletes a previously allocated population and frees all resources
associated with it. If no custom deallocation function was given only
the resources allocated by CreatePopulation() will be freed (If 
CreatePopulation() was called without a custom initialization function,
this is probably what you want).

   INPUTS
Pop - Pointer to the population to be deleted.

   RESULT
None.

   BUGS
None known.

   SEE ALSO
CreatePopulation()

 

7/21



   NAME
EnterGAP -- Initialize GAP environment.

   SYNOPSIS
void EnterGAP(int);

EnterGAP(Level);

   FUNCTION
Initializes the GAP environment.

   INPUTS
Level - Level of verbosity at startup, supported values range from 0 to 2
with 0=quiet, 1=normal, 2=verbose.

   RESULT
0 for failure, non-zero for success.

   EXAMPLE
int main(void)
{

/* Do some stuff here */
...
if(EnterGAP(1)) {
...
... /* Do everything else here. */
...
} else {
   fprintf(stderr,"Initialization failed.\n");
}
return(0); /* Finished, exit. */
}

   BUGS
None known.

   SEE ALSO

 

8/21



   NAME
Evolve -- Performs generation shift on a population.
EvolveT -- Varargs interface to Evolve().

   SYNOPSIS
struct Population *Evolve(struct Population *,struct TagItem *);
struct Population *EvolveT(struct Population *,Tag,...);

Pop = Evolve(Pop,TagList);
Pop = EvolveT(Pop,Tag0Type,...);

   FUNCTION
This is the big one. Evolve performs a generation shift, taking
a population and returning a new one.

   INPUTS
Pop - Pointer to an initialized population structure.
TagList - Pointer to a taglist.

   TAGS
EVL_Evaluator (double (*)(void *)) - Pointer to a function taking
     a pointer to an individual and returning its fitness value
     as a double. Note well that this tag is _required_.
     Also read the NOTE label further down.

EVL_Mutator (void (*)(void *,int)) - Pointer to a mutation function
     taking a pointer to an individual and its byte-size as an
     integer. This function should also decide if a mutation is to
     take place as it will be called exactly once for every
     individual in the population. NULL is a permitted value
     for this tag meaning that no mutation will take place. The default
     is to use a built-in function designed to mutate bitstrings.

EVL_Crosser (void (*)(void *,void *,int)) - Pointer to a function which
     performs crossover on two individuals. It should take two pointers
     to individuals and a byte-size parameter and return nothing (void).
     It will be called exactly once for every individual generated by
     crossover. NULL is not a permitted value for this tag. The default
     is to use a built-in function designed to perform crossover on two
     bitstrings.

EVL_Thermostat (double (*)(long,long)) - Pointer to a heat-regulating
     function for Boltzmann selection (TEMPERATURE). The default
     function is PopSize*(2.722-pow(1.0+1.0/Generation,Generation))
     but this might change in later versions. The function taked the size of
     the population as first argument and the generation as second.

EVL_Elite (int) - Sets the number of top individuals to copy from one
     generation to the next without crossover (with the risk for
     mutation though). Setting this value high will result in a
     steady-state type of GA. The default value is 0.
     Note!: Setting the Crowding flag currently alters the semantics of
     this tag! If Crowding is in effect the Elite number is the number
     of individuals not to generate. That is, in a population of eg. 20
     individuals an Elite value of 15 would mean generate 5 new individuals.

9/21



     available flags are:

FLG_InitDumped - Same as EVL_InitDumped
FLG_EraseBest  - Same as EVL_EraseBest
FLG_Crowding   - Same as EVL_Crowding
FLG_Statistics - Same as EVL_Statistics

     Example usage:  {EVL_Flags,FLG_Crowding|FLG_Statistics}
     **NOTE** If using EVL_Flags, you must explicitly set
     FLG_Statistics to generate statistics.

EVL_Dump (int) - Sets the number of bottom (worst) individuals to dump
     by replacing them with copies of the top (best) individuals.
     Default is 0.

EVL_Select (int) - Sets the select method used to determine parents
     when generating new individuals. Available methods are:

DRANDOM    : Double-random selection. A random individual
and one of those fitter than the first one
selected are chosen. (Default)

FITPROP    : Fitness proportionate selection.

SIGMA      : Sigma scaled fitness proportionate selection.

TOURNAMENT : Tournament selection (fast).

INORDER    : Inorder selection. The fittest individual is selected 
together with the rest in descending order of fitness.

TEMPERATURE: Boltzmann scaled selection. The selection
pressure varies over time as determined by
a ’heat’ function. See also the EVL_Thermostat
tag.

EVL_Stats (BOOL) - Generate statistics. Generating statistics will
     increase processing time significantly compared to not doing it.
     If statistics are enabled, the fitness function might be called
     twice as many times. Once for every old individual for evaluation
     and once for every new individual for generating statistics.
     This is dependant on caching and previous state. When caching is
     disabled, then the fitness function will always be called exactly
     twice if generating statistics. Default is TRUE.

EVL_PreMutate (BOOL) - Mutate old generation instead of new. This
     will mutate the parent population before generating new
     individuals. Note that this is done after evaluation so that
     setting this tag to TRUE will mean that there is no nessecary
     connection between good genes and a high fitness - only a
     probability thereof (depending on the mutator function). This
     emulates mutation occuring in mature individuals in nature.

EVL_Newbies (int) - Number of new individuals to generate. The
     individuals to replace will be randomly selected from the old
     population. This could for example be used to keep the fitness
     of a population down when co-evolving populations.

10/21



     taking two pointers to individuals in addition to their (equal) size
     and returning the absolute value of the distance (dissimilarity measure) 
     between them. Default is to measure the Hamming distance between
     individuals.

EVL_Crowding (BOOL) - Use crowding replacement where each new
     individual generated replaces the individual most like itself.
     Note! This tag currently alters the meaning of the EVL_Elite tag!

EVL_InitDumped (BOOL) - If dumping individuals (see EVL_Dump above)
     initialize them instead of replacing them with copies of the
     fittest indiviuals.

EVL_EraseBest (BOOL) - If generating new random individuals (see 
     EVL_Newbies tag above) replace the fittest individuals instead
     of random ones.

   RESULT
Pop - A pointer to the population structure or NULL is something

  went horribly wrong.

   NOTE
Note that Evolve always treats higher fitness values as better,
this means that you must take care to transform your fitness
values accordingly if needed before returning them.

   BUGS
None known, but if there are any major bugs this is probably where they are.

   SEE ALSO
CreatePopulation()

11/21



   NAME
Flip -- Flip a bit in a bitstring.

   SYNOPSIS
void Flip(void *,int);

Flip(Ind,At);

   FUNCTION
Flips a bit in a bitstring. Bits are counted from lower addresses to
higher.

   INPUTS
Ind - A pointer to the bitstring (individual).
At - The bit-position to be flipped.

   RESULT
None.

   BUGS
None known.

   SEE ALSO
Testbit()

 

12/21



   NAME
GaussRand -- Generate a gaussian pseudo-random number.

   SYNOPSIS
double GaussRand(double,double);

Val = GaussRand(My,Sigma);

   FUNCTION
Generates a pseudo random number around My with a Gaussian
distribution.

   INPUTS
My - Value around which to generate a random number.

Sigma - Standard deviation of the generated numbers.

   RESULT
Val - A random number.

   BUGS
None known.

   SEE ALSO
Rnd(), InitRand(), InRand(), InGaussRand()

13/21



   NAME
HammingDist -- Measure the Hamming distance between two bitstrings.

   SYNOPSIS
unsigned long int HammingDist(void *,void *,int);

distance = HammingDist(Ind1,Ind2,Size);

   FUNCTION
Counts the number of differings bits in two bitstrings.

   INPUTS
Ind1 - Pointer to the first bitstring (Individual)
Ind2 - Pointer to the second bitstring (Individual)
Size - Number of _BYTES_ in each bitstring.

   
   RESULT

The number of differing bits.

   BUGS
None known.

   SEE ALSO

14/21



   NAME
InGaussRand  -- Generate a bounded gaussian random number.

   SYNOPSIS
double InGaussRand(double,double,double);

Val = InGaussRand(My,Sigma,Delta);

   FUNCTION
Generates a pseudo random number in the range [My-Delta,My+Delta] with
a Gaussian distribution around My.

   INPUTS
My - Value around which to generate a random number.

Sigma - Standard deviation of the generated numbers.

Delta - Delta from My in which to generate numbers.

   RESULT
Val - A random number.

   BUGS
Setting Delta too small (<Sigma) will result in _very_ inefficient
random number generation. Setting Delta < 0.0 makes the function
enter an infinite loop.

   SEE ALSO
Rnd(), InitRand(), InRand(), GaussRand()

15/21



   NAME
InitRand -- Initialize pseudo-random number generator.

   SYNOPSIS
void InitRand(long);

InitRand(seed);

   FUNCTION
Initializes the internal pseudo-random number generator. This function
should be called with an appropriate seed before any of the random
number functions are called. Note that Evolve() also uses the random
number functions. A default seed is supplied but it is not recommended
to leave this as it is since every run will then be identical.

   INPUTS
seed - A seed value for the pseudo random number generator.

   RESULT
None.

   EXAMPLE
#include <stdlib.h> /* For definition of NULL */
#include <time.h>
#include <GAP.h>
...
int main(void)
{
...
InitRand(time(NULL));
...
return(0);
}

   BUGS
A seed value of 0 will not work properly.

   SEE ALSO
Rnd(), InRand()

16/21



   NAME
InRand -- Generate a bounded floating point pseudo-random number.

   SYNOPSIS
double InRand(double,double);

Val = InRand(Lo,Hi);

   FUNCTION
Generates a pseudo random number between Lo and Hi. The resolution of
the generated number is in steps of (Hi-Lo)/2147483646.

   INPUTS
Lo - Lower bound of the range in which to generate a random

  number.
Hi - Upper bound of the range in which to generate a random

  number.

   RESULT
Val - A random number in the range [Lo,Hi] (inclusive).

   BUGS
None known.

   SEE ALSO
Rnd(), InitRand()

17/21



   NAME
IRange -- Map an integer onto a range.

   SYNOPSIS
double IRange(unsigned long int,double,double);

v = IRange(Val,Lo,Hi);

   FUNCTION
Maps an unsigned long integer onto the range [Lo,Hi] (inclusive).

   INPUTS
Val - The value to map.
Lo  - Lower bound of the range.
Hi  - Higher bound of the range.

   RESULT
v   - A value in the range [Lo,Hi].

   BUGS
None known.

   SEE ALSO
InRand()

18/21



   NAME
PopMember -- Get the n:th member of a population.

   SYNOPSIS
void *PopMember(struct Population *,int);

Ind = PopMember(Pop,n);

   FUNCTION
Returns a pointer to the n:th individual in a population (counted from
zero). For a population with say 50 individuals, valid numbers would
range from 0 to 49.

   INPUTS
Pop - A pointer to an population structure.
n - The number of the individual to retrieve.

   RESULT
Ind - A pointer to the n:th individual in the population.

   BUGS
None known.

   SEE ALSO
CreatePopulation()

19/21



   NAME
Rnd -- Generate a pseudo-random integer.

   SYNOPSIS
long int Rnd(long int);

Val = Rnd(Hi);

   FUNCTION
Generates a pseudo-random integer between zero and one less than Hi.
The random number generator is cyclic and repeats after 2147483645
generated numbers.

   INPUTS
Hi - Upper bound of random number.

   RESULT
Val - An integer in the range [0,Hi[.

   BUGS
Hi can not be greater than 2147483646 (0x7ffffffe = 2^31-1).
This means that Rnd() only gives 31 random bits, not 32.

   SEE ALSO
InRand(), InitRand()

20/21



   NAME
Testbit -- Test the status of an arbitrary bit in a bitstring.

   SYNOPSIS
int Testbit(void *,int);

status = Testbit(Ind,At);

   FUNCTION
Tests the status of a bit in a bitstring. Bits are counted from lower
addresses to higher.

   INPUTS
Ind - A pointer to the bitstring.
At - The number of the bit to be tested.

   RESULT
0 if the bit is clear, non-zero otherwise.

   BUGS
None known.

   SEE ALSO
Flip()

 

21/21


